Apparate

Rethinking Early Exits to Tame Latency-Throughput Tensions in ML Serving

Yinwei Dai*, Rui Pan*, Anand Iyer, Kai Li, Ravi Netravali

11/06/2024 SOSP 2024

ML-Based Interactive Applications Are Pervasive

ML-Based Interactive Applications Are Pervasive

ML-Based Interactive Applications Are Pervasive

Goal: maximize throughput and meet latency SLOs

to maximize throughput and minimize SLO violations

Existing systems view latency utility as binary: meeting SLOs or not

Batch Size Tuning

Presents harsh latency-throughput tradeoffs

Batch Size Tuning

Presents harsh latency-throughput tradeoffs

Median latency improvements (17–39%) cause up to 3.6× throughput reductions

Batch Size Tuning

Presents harsh latency-throughput tradeoffs

Median latency improvements (17–39%) cause up to 3.6× throughput reductions

Batch size is too coarse-grained to trade off per-input latency

Models are over-parametrized

Models are over-parametrized

Models are over-parametrized

Sentiment Classification	Image Classification

Models are over-parametrized

Models are over-parametrized

Models are over-parametrized

Input easiness varies

Adapt per-input compute!

by allowing "easy" inputs to exit early

Augment intermediate layers with ramps (intermediate classifiers)

- Augment intermediate layers with ramps (intermediate classifiers)
- Exiting decisions: confidence > threshold (e.g., 0.8)

- Augment intermediate layers with ramps (intermediate classifiers)
- Exiting decisions: confidence > threshold (e.g., 0.8)

- Augment intermediate layers with ramps (intermediate classifiers)
- Exiting decisions: confidence > threshold (e.g., 0.8)

- Augment intermediate layers with ramps (intermediate classifiers)
- Exiting decisions: confidence > threshold (e.g., 0.8)

- Augment intermediate layers with ramps (intermediate classifiers)
- Exiting decisions: confidence > threshold (e.g., 0.8)

- Augment intermediate layers with ramps (intermediate classifiers)
- Exiting decisions: confidence > threshold (e.g., 0.8)

- Augment intermediate layers with ramps (intermediate classifiers)
- Exiting decisions: confidence > threshold (e.g., 0.8)

by allowing "easy" inputs to exit early

Optimal Early Exits minimize

latency without sacrificing throughput

Early Exits: Practical Challenges

low accuracy and high overheads

low accuracy and high overheads

low accuracy and high overheads

No feedback!

low accuracy and high overheads

low accuracy and high overheads

low accuracy and high overheads

Early Exits aim for saving both latency and computation

No feedback for online adaptation

low accuracy and high overheads

Overheads?

Accuracy?

Early Exits aim for saving both latency and computation

- No feedback for online adaptation
- Up to 24% accuracy loss and 22% latency overheads

No feedback!

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

Ramp Location

Partial features result in low ramp accuracy!

challenge: ramp location, architecture, and weights

Ramp Location

cutting vertices

Partial features result in low ramp accuracy!

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

challenge: ramp location, architecture, and weights

Ramp Architecture

cheapest ramps

Apparate: Automatic integration for EEs

challenge: ramp location, architecture, and weights

Ramp weights

Apparate: Automatic integration for EEs

challenge: ramp location, architecture, and weights

Ramp weights

parallel training

challenge: massive space of EE configurations

challenge: massive space of EE configurations

challenge: massive space of EE configurations

challenge: massive space of EE configurations

challenge: massive space of EE configurations

challenge: massive space of EE configurations

challenge: massive space of EE configurations

- Threshold Tuning:
 - Cheap and controls accuracy

- Threshold Tuning:
 - Cheap and controls accuracy
 - Adjusts immediately to bound accuracy loss

- Threshold Tuning:
 - Cheap and controls accuracy
 - Adjusts immediately to bound accuracy loss

- Threshold Tuning:
 - Cheap and controls accuracy
 - Adjusts immediately to bound accuracy loss
- Ramp Tuning:
 - Expensive and bounds latency
 - Adjusts periodically to optimize latency savings

- Threshold Tuning:
 - Cheap and controls accuracy
 - Adjusts immediately to bound accuracy loss
- Ramp Tuning:
 - Expensive and bounds latency
 - Adjusts periodically to optimize latency savings
 - Multiple lightweight ramps reduce the impact of missing highly effective ramps

insight 2: leverage EE properties for fast tuning

insight 2: leverage EE properties for fast tuning

insight 2: leverage EE properties for fast tuning

insight 2: leverage EE properties for fast tuning

insight 2: leverage EE properties for fast tuning

insight 2: leverage EE properties for fast tuning

Threshold tuning is quick and achieves nearoptimal latency savings

the first system that automatically integrates and manages EEs for ML inference

the first system that automatically integrates and manages EEs for ML inference

the first system that automatically integrates and manages EEs for ML inference

- How does Apparate compare with vanilla model inference?
 - Non-generative workloads
 - Generative workloads
- How does Apparate compare with baselines
- How does Apparate perform under different SLOs?
- How dose Apparate perform under different latency/acc budget?
- What's the runtime overhead?

•

Performance on CV workloads

Performance on CV workloads

Performance on CV workloads

Up to 94% lower median latency than vanilla, and is close to optimal

Performance on NLP workloads

Performance on NLP workloads

18

Performance on generative workloads

Performance on generative workloads

Apparate lowers median TPT by 22–37% compared with vanilla Llama models

Compare Apparate with two layer inference systems

NLP: Distilbert, BERT-base

Compare Apparate with two layer inference systems

NLP: Distilbert, BERT-base

Apparate delivers 21-42% lower P95 latencies compared to these baselines

Compare Apparate with two layer inference systems

Apparate delivers 21-42% lower P95 latencies compared to these baselines

Compare Apparate with two layer inference systems

NLP: Distilbert, BERT-base

Apparate delivers up to 66% lower median latencies compared to these baselines

Compare Apparate with two layer inference systems

Apparate delivers up to 66% lower median latencies compared to these baselines

The First Runtime Management System for Early Exit Networks

- Injects EEs for user-provided models without requiring manual effort or expertise
- Repurposes EEs for rapid results with continuous feedback for online adaptation
- Reduces per-request latency while meeting accuracy and overhead constraint

Source code available at https://github.com/dywsjtu/apparate