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 Cheap and controls accuracy

* Adjusts immediately to bound accuracy loss
 Ramp Tuning:

* EXpensive and bounds latency

* Adjusts periodically to optimize latency savings
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Evaluation

Performance on NLP workloads
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Apparate lowers median latencies by 10-24%




Evaluation

Performance on generative workloads
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Evaluation

Performance on generative workloads
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Evaluation

Compare Apparate with two layer inference systems
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Evaluation

Compare Apparate with two layer inference systems
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Apparate delivers 21-42% lower P95 latencies compared to these baselines
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Evaluation

Compare Apparate with two layer inference systems
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Evaluation

Compare Apparate with two layer inference systems
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Apparate delivers up to 66% lower median latencies compared to these baselines
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Evaluation

Compare Apparate with two layer inference systems
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[Apparate delivers up to 66% lower median latencies compared to these baselines
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Apparate

The First Runtime Management System for Early Exit Networks
* |njects EEs for user-provided models without requiring manual effort or expertise
 Repurposes EEs for rapid results with continuous feedback for online adaptation

 Reduces per-request latency while meeting accuracy and overhead constraint

@ 11O

Accuracy Latency Throughput

X

Source code available at https://github.com/dywsjtu/apparate
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